ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Juan José Ortiz, Alejandro Castillo, José Luis Montes, Raúl Perusquía, José Luis Hernández
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 148-157
Technical Paper | doi.org/10.13182/NSE162-148
Articles are hosted by Taylor and Francis Online.
RENO-CC, a system to optimize nuclear fuel lattices for boiling water reactors using a multistate recurrent neural network, is shown. This kind of neural network is formed by only one layer of neurons. Each neuron is associated with a pin of the fuel lattice array. RENO-CC was tested through the fuel lattice design of 10 × 10 arrays with two water channels. Thus, the neural network has a total of 51 neurons; four neurons are associated with the channels (they correspond to a half fuel lattice). The neuron's outputs are known as the neural states. The RENO-CC's neural network works by changing the neural states in order to decrease or increase the value of an objective function. Neural states are chosen from an inventory of pins with different 235U enrichment and gadolinia concentrations. The objective function includes both the local power peaking factor and the infinite multiplication factor. These parameters are calculated with the HELIOS code. A fuzzy logic system is applied in order to decide if the designed fuel lattice is suitable to be evaluated by a three-dimensional reactor core simulator. To carry out the assessment, the fuel lattices with the best fuzzy qualification are placed at the bottom zone of a predesigned fuel assembly and predesigned fuel loading and control rod patterns. Fuel lattice performance is verified with the Core Master PRESTO core simulator. According to the obtained results, RENO-CC could be considered as a powerful tool to design fuel lattices. The system was programmed with Fortran 77 using a UNIX interface in an Alpha workstation.