ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Tong Kyu Park, Han Gyu Joo, Chang Hyo Kim, Hyun Chul Lee
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 134-147
Technical Paper | doi.org/10.13182/NSE162-134
Articles are hosted by Taylor and Francis Online.
The problem of multiobjective fuel loading pattern (LP) optimization employing high-fidelity three-dimensional (3-D) models is resolved by introducing the concepts of discontinuous penalty function, dominance, and two-dimensional (2-D)-based screening into the simulated annealing (SA) algorithm. Each constraint and objective imposed on a reload LP design is transformed into a discontinuous penalty function that involves a jump to a quadratic variation at the point of the limiting value of the corresponding core characteristics parameter. It is shown that with this discontinuous form the sensitivity of the penalty coefficients is quite weak compared to the stochastic effect of SA. The feasible LPs found during SA update the set of candidate LPs through a dominance check that is done by examining multiple objectives altogether. The 2-D-based screening technique uses a precalculated database of the 2-D solution errors and is shown to be very effective in saving the SA computation time by avoiding 3-D evaluations for the unfavorable LPs that are frequently encountered in SA. Realistic applications of the proposed method to a pressurized water reactor reload LP optimization with the dual objectives of maximizing the cycle length and minimizing the radial peaking factor demonstrate that the method works quite well in practice.