ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
E. Rich, Gilles Noguere, C. De Saint Jean, A. Tudora
Nuclear Science and Engineering | Volume 162 | Number 1 | May 2009 | Pages 76-86
Technical Paper | doi.org/10.13182/NSE162-76
Articles are hosted by Taylor and Francis Online.
For the modeling of the neutron cross sections, three energy ranges can be distinguished. The resolved resonance range can be interpreted in terms of single-level, multilevel, Reich-Moore, or R-matrix parameters. The unresolved resonance range (URR) is described with the average R-matrix and Hauser-Feshbach formalisms. For the high energies ("continuum"), optical model parameters are used in association with statistical and preequilibrium models. One of the main challenges of such a work is to study the consistency of the average parameters obtained by these different calculations. With the ESTIMA and SPRT methods, we provide a set of parameters for partial s-waves and p-waves (strength functions Sl and effective potential scattering radius R'). However, accurate analysis of the URR domain needs more information than parameters R' and Sl associated with orbital moments l = 0 and l = 1. Using links between the average R-matrix formalism and the optical model calculations, we propose a generalization of the SPRT method for l > 1 and a new description of the URR domain in terms of Sl and RlJ.