ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
M. T. Pigni, M. Herman, P. Oblozinsky
Nuclear Science and Engineering | Volume 162 | Number 1 | May 2009 | Pages 25-40
Technical Paper | dx.doi.org/10.13182/NSE162-25
Articles are hosted by Taylor and Francis Online.
We generated, for the first time, a very comprehensive set of estimates of cross-section covariance data in the neutron energy range of 5 keV to 20 MeV. The covariance matrices were obtained for 307 materials, from 19F to 209Bi, covering structural materials, fission products, and heavy nonfissile nuclei. These results offer model-based, consistent assessments of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE, which calculates the sensitivity of the cross sections to nuclear reaction model parameters, and the Bayesian code KALMAN, which propagates uncertainties of the model parameters to these cross sections. Taking into account the large number of materials studied, we refer only marginally to experimental data. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities, and the strength of the preequilibrium emission. Our work represents the first attempt to generate neutron cross-section covariances on such a large scale.