ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Byung Wook Kim, Hyunsang Cho, Juan Wachs, Richard M. Voyles
Nuclear Science and Engineering | Volume 199 | Number 8 | August 2025 | Pages 1310-1324
Research Article | doi.org/10.1080/00295639.2024.2423539
Articles are hosted by Taylor and Francis Online.
High-consequence materials, such as nuclear waste, pose significant risks if improperly handled. Gloveboxes provide a controlled environment to manage these materials safely, yet they present challenges in operator safety, efficiency, and ergonomics. This paper addresses these challenges by presenting a proof-of-concept framework for Semi-Autonomous Robot Teleportation for Nuclear Glovebox Processing (SART-NGP). Unlike the existing manual systems already in use at nuclear facilities, the SART-NGP framework incorporates adjustable autonomy capabilities, drawing inspiration from advancements in surgical robotics. By integrating high-level human inputs, semi-autonomous execution, robust feedback mechanisms, and a simulator-based interface, this framework significantly enhances safety and efficiency while alleviating ergonomic concerns associated with glovebox processing in nuclear facilities. Although we have not fully solved the challenges associated with nuclear glovebox processing, our research provides promising insights and methodologies that may significantly improve the management of high-consequence materials and augments existing efforts in self-driving labs for glovebox operations. The findings suggest that the SART-NGP framework holds substantial potential for enhancing glovebox processing in nuclear facilities, with future work focusing on its real-world implementation and evaluation.