ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
H. Ahmadi, M. Rahgoshay, A. Heydarinasab
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1263-1272
Note | doi.org/10.1080/00295639.2024.2440684
Articles are hosted by Taylor and Francis Online.
Positron emission tomography (PET) is an advanced imaging tool for the diagnosis and staging of cancer tumors. This method is based on the detection of increased glycolytic activity in malignant cells, in which cell glucose is concentrated because of an increase in membrane glucose transporters, as well as an increase in some key enzymes, such as hexokinase, which are responsible for glucose phosphorylation. Therefore, for this type of imaging, drugs containing glucose are needed. On the other hand, with the expansion of the use of PET imaging devices, the need for drugs for this type of imaging method [fluorodeoxyglucose drug (FDG)] has also increased significantly. FDG is a drug tracer used in the medical imaging technique of PET. The production of FDG requires the production of 18F and, as a result, reaching 18O with a richness of more than 95%. There are various methods to produce oxygen with high richness. Among these methods, using a distillation column is a suitable method to produce oxygen, which has low efficiency and high production cost. Optimization of the distillation column can reduce the cost of producing high-rich oxygen. Numerical methods are one of the useful techniques for optimization. In this study, the distillation column has been computerized using mathematical models, and then by changing the number of inputs, including the height of the pipes, the temperature of the input of the distillation column has been optimized. Results show that the maximum separation of the desired isotope concentration in the distillation tower depends on the type of isotope desired and the condition of the device and is independent of the type of feed. Also, the input feed has no effect on the concentration distribution.