ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
H. Ahmadi, M. Rahgoshay, A. Heydarinasab
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1263-1272
Note | doi.org/10.1080/00295639.2024.2440684
Articles are hosted by Taylor and Francis Online.
Positron emission tomography (PET) is an advanced imaging tool for the diagnosis and staging of cancer tumors. This method is based on the detection of increased glycolytic activity in malignant cells, in which cell glucose is concentrated because of an increase in membrane glucose transporters, as well as an increase in some key enzymes, such as hexokinase, which are responsible for glucose phosphorylation. Therefore, for this type of imaging, drugs containing glucose are needed. On the other hand, with the expansion of the use of PET imaging devices, the need for drugs for this type of imaging method [fluorodeoxyglucose drug (FDG)] has also increased significantly. FDG is a drug tracer used in the medical imaging technique of PET. The production of FDG requires the production of 18F and, as a result, reaching 18O with a richness of more than 95%. There are various methods to produce oxygen with high richness. Among these methods, using a distillation column is a suitable method to produce oxygen, which has low efficiency and high production cost. Optimization of the distillation column can reduce the cost of producing high-rich oxygen. Numerical methods are one of the useful techniques for optimization. In this study, the distillation column has been computerized using mathematical models, and then by changing the number of inputs, including the height of the pipes, the temperature of the input of the distillation column has been optimized. Results show that the maximum separation of the desired isotope concentration in the distillation tower depends on the type of isotope desired and the condition of the device and is independent of the type of feed. Also, the input feed has no effect on the concentration distribution.