ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Kun Xiao, Yichen Xu, Yaxin Yang, Xudong Hu, Qibin Luo, Zhongyi Duan, Changwei Jiao, Mengshi Chen, Dening Yin
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1246-1262
Research Article | doi.org/10.1080/00295639.2024.2437916
Articles are hosted by Taylor and Francis Online.
The sandstone-type uranium deposits located within the Songliao Basin of China, which are noted for their significant reserves and low mining costs, have become a primary focus for uranium exploration in the country. Accurate detection of such anomalies is essential for the exploration and assessment of uranium resources. Traditional logging identification methods face challenges, including low accuracy, slow recognition speeds, and limited generalization capabilities. With advancements in technology, artificial intelligence has introduced a novel research paradigm for identifying uranium deposits.
This study, which concentrates on the sandstone-type uranium deposits in northern China’s Songliao Basin, employs two representative ensemble learning algorithm models, extreme gradient boosting (XGBoost) and random forest (RF), to facilitate the automatic identification of stratigraphic lithology and uranium-bearing layers. The performance outcomes of these models are compared with those from the K-nearest neighbor classification algorithm, the gradient boosting decision tree algorithm, the back propagation algorithm, and the support vector machine algorithm, which are recognized as typical machine learning algorithms. The prediction accuracy across all six models exceeded 91%, underscoring the efficacy of machine learning techniques in identifying lithologies associated with uranium deposits.
Among them, the XGBoost model demonstrated superior recognition performance with an accuracy rate of 98.54%, followed closely by the RF model at 98.20%. Both the XGBoost and RF models exhibited high accuracy rates in detecting uranium anomaly layers and mineralized zones, achieving accuracies of 98.81% and 98.22%, respectively.
To address issues related to imbalanced sample data, this study employed the synthetic minority oversampling technique, thereby enhancing both accuracy and comprehensiveness when identifying thin uranium-bearing layers. The optimization process grounded in ensemble algorithms provides a theoretical foundation as well as technical support for intelligent identification methodologies pertaining to sandstone-type uranium deposits.