ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Ajoy Debbarma
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1213-1230
Research Article | doi.org/10.1080/00295639.2024.2438568
Articles are hosted by Taylor and Francis Online.
This study investigates the rewetting behavior of an Advanced Heavy Water Reactor (AHWR) fuel rod bundle during a loss-of-coolant accident using computational fluid dynamics simulations with ANSYS CFX. The analysis focuses on the cooling effectiveness of radial jet impingement at varying flow rates and its impact on rewetting temperature and wetting delay. Simulations were conducted by maintaining a constant initial wall temperature, with cooling curves and contour profiles extracted from various angular positions along the axial rod surfaces. The results reveal that rewetting is faster near the jet sections due to enhanced coolant interaction, while areas farther from the jets exhibit delayed wetting and elevated wall temperatures, where vapor accumulation hinders heat dissipation. Higher flow rates minimize wetting delays and improve cooling by promoting transition and nucleate boiling. However, irregular coolant splashing and vapor dominance disrupt the uniformity of rewetting across the bundle. The study highlights the limited impact of increased flow rates on achieving consistent rewetting along the entire rod length, with substantial fluctuations observed in cooling performance at different vertical positions. The findings emphasize the need for further research under high-temperature steam conditions to better understand boiling mechanisms and improve the stability of emergency cooling systems in nuclear reactors.