ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Weiping Deng, Tao Wan, Yongqin Ju, Weifeng Yang, Xueying Zhang
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1201-1212
Research Article | doi.org/10.1080/00295639.2024.2411168
Articles are hosted by Taylor and Francis Online.
The CiADS (China initiative Accelerator Driven System) project plans to build a 250-kW experimental target before construction of the 2.5-MW spallation target. In this paper, the effect of proton beam distribution on the performance of the 250-kW target is studied. Hence, a hollow beam distribution, formed by a Gaussian beam scanning around the center of the beam window, is proposed. Then, combined with the orthogonal test method and the CRITIC (Criteria Importance through Intercriteria Correlation) method, four key geometric parameters of the target flow channel are analyzed to simultaneously achieve optimization of the target performance from the viewpoints of both the maximum temperature and velocity under steady-state condition. Finally, transient analysis of the initiation of the Gaussian beam scanning is conducted; the calculation time was 15s. The results show that the temperature on the window rose gradually until reaching its maximum value corresponding to the steady-state analysis. Detailed analyses showed that the optimized target design is capable of meeting the thermal-hydraulic and mechanical requirements.