ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Noah A. W. Walton, Oleksii Zivenko, Amanda M. Lewis, William Fritsch, Jacob Forbes, Jesse M. Brown, David A. Brown, Gustavo P. A. Nobre, Vladimir Sobes
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1091-1106
Research Article | doi.org/10.1080/00295639.2024.2439700
Articles are hosted by Taylor and Francis Online.
Global and national efforts to deliver high-quality nuclear data to users have a wide-ranging impact, affecting applications in national security, reactor operations, basic science, medicine, and more. Cross-section evaluation is a major part of this effort, combining theory and experimentation to produce recommended values and uncertainties for reaction probabilities. Resonance region evaluation is a specialized type of nuclear data evaluation that can require significant manual effort and months of time from expert scientists. In this article, nonconvex, nonlinear optimization methods are combined with concepts of inferential statistics to infer a resonance model from experimental data in an automated manner that is not dependent on prior evaluation(s). This methodology aims to enhance the workflow of a resonance evaluator by minimizing time, effort, and the potential for bias from prior assumptions, while enhancing reproducibility and documentation, thereby addressing well-known challenges in the field.