ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
P. Maka, E. Van Heerden, M. Rezaee
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S987-S993
Research Article | doi.org/10.1080/00295639.2024.2315905
Articles are hosted by Taylor and Francis Online.
Evaluating atmospheric dispersion and radiological doses in the vicinity of buildings is required for small modular reactors (SMRs) because of the reduced size of their exclusion area boundary. The current Canadian nuclear industry tool for these calculations implements the methodology defined in CSA Standard N288.2-M91, which was written to support large Canada Deuterium Uranium (CANDU) nuclear reactors as opposed to SMRs. The ORCA (On/offsite Radiological Consequences of Accidents) code has been developed to address this technical concern in addition to evaluating atmospheric dispersion and doses in the far field. The code calculates worker and public doses following an airborne release of radioactive material into the atmosphere under postulated accident conditions at a nuclear facility. The current paper presents the key assumptions and methods utilized in ORCA and discusses qualification of the software to the requirements of CSA Standard N286.7-16. The new model is applicable to SMRs and existing reactor designs and reduces conservatisms in the near field (i.e., <1 km from the source) relative to the methods in CSA N288.2-M91.