ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. Maka, E. Van Heerden, M. Rezaee
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S987-S993
Research Article | doi.org/10.1080/00295639.2024.2315905
Articles are hosted by Taylor and Francis Online.
Evaluating atmospheric dispersion and radiological doses in the vicinity of buildings is required for small modular reactors (SMRs) because of the reduced size of their exclusion area boundary. The current Canadian nuclear industry tool for these calculations implements the methodology defined in CSA Standard N288.2-M91, which was written to support large Canada Deuterium Uranium (CANDU) nuclear reactors as opposed to SMRs. The ORCA (On/offsite Radiological Consequences of Accidents) code has been developed to address this technical concern in addition to evaluating atmospheric dispersion and doses in the far field. The code calculates worker and public doses following an airborne release of radioactive material into the atmosphere under postulated accident conditions at a nuclear facility. The current paper presents the key assumptions and methods utilized in ORCA and discusses qualification of the software to the requirements of CSA Standard N286.7-16. The new model is applicable to SMRs and existing reactor designs and reduces conservatisms in the near field (i.e., <1 km from the source) relative to the methods in CSA N288.2-M91.