ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Hao Luo, Kaiwen Li, Nan An, Shanfang Huang, Kan Wang
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S966-S986
Research Article | doi.org/10.1080/00295639.2024.2316955
Articles are hosted by Taylor and Francis Online.
Accurate estimation of energy deposition is important in core physics and severe accident analyses for design optimizations. In this study, a new energy deposition treatment is implemented in the Reactor Monte Carlo (RMC) code, offering multiple modes with varying levels of fidelity and computational requirements. The most precise mode is utilized in coupling simulations between RMC and the subchannel thermal-hydraulic analysis code SUBCHAN, incorporating an explicit moderator heating fraction in the coupling interface. The new treatment is verified against references from MCNP, Serpent, and OpenMC for three light water reactor (LWR) assembly cases, and great agreement is achieved. Energy deposition in different materials and components is emphasized in Kilowatt Reactor Using Stirling TechnologY (KRUSTY) modeling, and the results obtained using different modes are compared. The RMC-SUBCHAN coupling calculations for the three LWR assembly cases, employing the most accurate model, reveal a maximum increase of 94.6 K in the control rod centerline temperature, with a normalized energy deposition of 35.9% in the control rod regions. In the assembly case with gadolinium (Gd) burnable poison, a temperature increase of 7.3 K is observed in the Gd rod centerline, while the coolant outlet temperature decreases by 1.6 K due to the reduced explicit moderator heating fraction of 2.1%, compared to the constant 2.6% in the previous coupling scheme.