ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Kristel Ghoos, Lukas Zavorka, Joseph Tipton, Igor Remec
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S954-S965
Research Article | doi.org/10.1080/00295639.2024.2383099
Articles are hosted by Taylor and Francis Online.
The Second Target Station (STS) at the Spallation Neutron Source of the U.S. Department of Energy’s Oak Ridge National Laboratory is being designed to become the world’s highest peak brightness source of cold neutrons. As the STS project evolves, neutronics and other engineering analyses will inform many design iterations. To facilitate this process, a fully automated optimization workflow was developed to convert a parameterized computer-aided-design model of the target into an unstructured mesh geometry model and then to run a neutronics calculation and (optionally) a mechanical analysis for each design iteration. This workflow enables efficient, high-fidelity modeling; simulation; and optimization of new designs, as has been demonstrated for the optimization of the STS neutron moderators. In this paper, we present the results of our first major effort to automate the design optimization process for a spallation target. In the first analysis, the goal is to find optimal dimensions of a monolithic tungsten target coupled with an optimal super-Gaussian proton beam profile to deliver maximum brightness of the resulting neutron beams while maintaining good mechanical properties of the target. In the second analysis, geometric and beam parameters are optimized for an alternative design with tungsten plates, which can reach superior mechanical performance without compromising the neutronics performance.