ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Quincy Huhn, Ben C. Yee, Andrew T. Till
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S941-S953
Research Article | doi.org/10.1080/00295639.2024.2347688
Articles are hosted by Taylor and Francis Online.
Arbitrary Lagrangian-Eulerian methods are a popular choice for hydrodynamic modeling in radiation (rad-hydro) simulations. Because these methods involve a relaxation step that moves the mesh relative to material boundaries, multimaterial spatial zones are generally present. Accurate treatments of these zones are needed to resolve various physical phenomena of interest for inertial confinement fusion applications. However, these codes are often paired with single-material, deterministic thermal radiative transfer (TRT) codes that are oblivious to the material compositions of each zone. These single-material TRT codes can only accept homogenized material properties (opacities, specific heats, etc.) from the hydrodynamic code and output homogenized solutions. After each TRT time step, the multimaterial hydrodynamic code must dehomogenize the quantities computed by the TRT package in order to update subzonal material temperatures.
The process by which hydrodynamic codes perform this dehomogenization has not been well documented in previous literature, and the methods can vary significantly from code to code. The purpose of this paper is to document, study, and compare existing techniques used for rad-hydro simulations as well as present a new method with potentially promising results. We summarize several methods and give comparisons on infinite-medium problems as well a finite-medium problem for two of the methods.