ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Quincy Huhn, Ben C. Yee, Andrew T. Till
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S941-S953
Research Article | doi.org/10.1080/00295639.2024.2347688
Articles are hosted by Taylor and Francis Online.
Arbitrary Lagrangian-Eulerian methods are a popular choice for hydrodynamic modeling in radiation (rad-hydro) simulations. Because these methods involve a relaxation step that moves the mesh relative to material boundaries, multimaterial spatial zones are generally present. Accurate treatments of these zones are needed to resolve various physical phenomena of interest for inertial confinement fusion applications. However, these codes are often paired with single-material, deterministic thermal radiative transfer (TRT) codes that are oblivious to the material compositions of each zone. These single-material TRT codes can only accept homogenized material properties (opacities, specific heats, etc.) from the hydrodynamic code and output homogenized solutions. After each TRT time step, the multimaterial hydrodynamic code must dehomogenize the quantities computed by the TRT package in order to update subzonal material temperatures.
The process by which hydrodynamic codes perform this dehomogenization has not been well documented in previous literature, and the methods can vary significantly from code to code. The purpose of this paper is to document, study, and compare existing techniques used for rad-hydro simulations as well as present a new method with potentially promising results. We summarize several methods and give comparisons on infinite-medium problems as well a finite-medium problem for two of the methods.