ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Quincy Huhn, Ben C. Yee, Andrew T. Till
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S941-S953
Research Article | doi.org/10.1080/00295639.2024.2347688
Articles are hosted by Taylor and Francis Online.
Arbitrary Lagrangian-Eulerian methods are a popular choice for hydrodynamic modeling in radiation (rad-hydro) simulations. Because these methods involve a relaxation step that moves the mesh relative to material boundaries, multimaterial spatial zones are generally present. Accurate treatments of these zones are needed to resolve various physical phenomena of interest for inertial confinement fusion applications. However, these codes are often paired with single-material, deterministic thermal radiative transfer (TRT) codes that are oblivious to the material compositions of each zone. These single-material TRT codes can only accept homogenized material properties (opacities, specific heats, etc.) from the hydrodynamic code and output homogenized solutions. After each TRT time step, the multimaterial hydrodynamic code must dehomogenize the quantities computed by the TRT package in order to update subzonal material temperatures.
The process by which hydrodynamic codes perform this dehomogenization has not been well documented in previous literature, and the methods can vary significantly from code to code. The purpose of this paper is to document, study, and compare existing techniques used for rad-hydro simulations as well as present a new method with potentially promising results. We summarize several methods and give comparisons on infinite-medium problems as well a finite-medium problem for two of the methods.