ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Ronja Schönecker, Paolo Bianchini, Frederic Thomas, Yoann Calzavara, Winfried Petry, Christian Reiter
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S881-S897
Research Article | doi.org/10.1080/00295639.2024.2340141
Articles are hosted by Taylor and Francis Online.
Taillefer is a versatile Python tool for carrying out Sensitivity Analysis (SA) and uncertainty propagation (UP) studies based on Monte Carlo sampling. Developed with the primary goal of investigating sensitivities and uncertainties of steady-state thermal-hydraulic (SSTH) safety parameters of the high-performance research reactors Forschungs Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching, Germany, and the Réacteur à Haut Flux (RHF) in Grenoble, France, it can also be used for a large variety of other modeling problems.
The work presented here aims to explain the underlying mathematical background of SA and UP studies with Taillefer and to show some steps to verify these routines. Furthermore, a real-life application example is provided that demonstrates Taillefer’s use in SSTH analysis of the RHF. For this purpose, Taillefer is coupled to the external thermal-hydraulic software PLTEMP/ANL, which is one of the codes used at FRM II and RHF to access SSTH performance and safety parameters.
Determining these crucial quantities is part of identifying possible low-enriched uranium (LEU) core designs that are suitable to replace the currently used highly enriched uranium fuels of the two reactors, supporting global nonproliferation efforts. Taillefer is a powerful tool in these conversion studies, as it increases the reliability of the LEU safety parameters by providing information about sensitivities and uncertainties in addition to the nominal values predicted by the thermal-hydraulic software.