ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Enrica Belfiore, Federico Grimaldi, Luca Fiorito, Pablo Romojaro, Gašper Žerovnik, Pierre-Etienne Labeau, Sandra Dulla
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S836-S857
Research Article | doi.org/10.1080/00295639.2024.2323217
Articles are hosted by Taylor and Francis Online.
Monte Carlo sampling is frequently employed for uncertainty quantification in depletion calculations. Several assumptions are needed to perform this analysis. In this work, an assessment of these assumptions is proposed via sample convergence studies and perturbation of the sampling distribution. The Uncertainty Analysis in Best-Estimate Modeling (UAM) Pincell Hot Full Power and the Turkey Point reference cases were considered for this purpose. The 235U thermal independent fission yield uncertainties evaluated in JEFF-3.3 and JEFF-4.0 were propagated to the nuclide vector and to the system multiplication factor. Using JEFF-4.0 data, a 75% reduction in the uncertainty of selected nuclide concentrations and an 80% reduction in the multiplication factor uncertainty were observed, showcasing the effect of full covariance evaluations. The presented results also prove that the uncertainty in the considered observables shows marginal dependence on the sampling distribution.