ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Enrica Belfiore, Federico Grimaldi, Luca Fiorito, Pablo Romojaro, Gašper Žerovnik, Pierre-Etienne Labeau, Sandra Dulla
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S836-S857
Research Article | doi.org/10.1080/00295639.2024.2323217
Articles are hosted by Taylor and Francis Online.
Monte Carlo sampling is frequently employed for uncertainty quantification in depletion calculations. Several assumptions are needed to perform this analysis. In this work, an assessment of these assumptions is proposed via sample convergence studies and perturbation of the sampling distribution. The Uncertainty Analysis in Best-Estimate Modeling (UAM) Pincell Hot Full Power and the Turkey Point reference cases were considered for this purpose. The 235U thermal independent fission yield uncertainties evaluated in JEFF-3.3 and JEFF-4.0 were propagated to the nuclide vector and to the system multiplication factor. Using JEFF-4.0 data, a 75% reduction in the uncertainty of selected nuclide concentrations and an 80% reduction in the multiplication factor uncertainty were observed, showcasing the effect of full covariance evaluations. The presented results also prove that the uncertainty in the considered observables shows marginal dependence on the sampling distribution.