ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Enrica Belfiore, Federico Grimaldi, Luca Fiorito, Pablo Romojaro, Gašper Žerovnik, Pierre-Etienne Labeau, Sandra Dulla
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S836-S857
Research Article | doi.org/10.1080/00295639.2024.2323217
Articles are hosted by Taylor and Francis Online.
Monte Carlo sampling is frequently employed for uncertainty quantification in depletion calculations. Several assumptions are needed to perform this analysis. In this work, an assessment of these assumptions is proposed via sample convergence studies and perturbation of the sampling distribution. The Uncertainty Analysis in Best-Estimate Modeling (UAM) Pincell Hot Full Power and the Turkey Point reference cases were considered for this purpose. The 235U thermal independent fission yield uncertainties evaluated in JEFF-3.3 and JEFF-4.0 were propagated to the nuclide vector and to the system multiplication factor. Using JEFF-4.0 data, a 75% reduction in the uncertainty of selected nuclide concentrations and an 80% reduction in the multiplication factor uncertainty were observed, showcasing the effect of full covariance evaluations. The presented results also prove that the uncertainty in the considered observables shows marginal dependence on the sampling distribution.