ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Mekiel Olguin, Christopher Perfetti, Brian Franke, Aaron Olson
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S818-S827
Research Article | doi.org/10.1080/00295639.2025.2462893
Articles are hosted by Taylor and Francis Online.
The sensitivity analysis algorithms that have been developed by the radiation transport community in multiple neutron transport codes, such as MCNP and SCALE, are extensively used by fields such as the nuclear criticality community. However, these techniques have seldom been considered for electron transport applications. In the past, the differential-operator method with the single scatter capability has been implemented in Sandia National Laboratories’ Integrated TIGER Series (ITS) coupled electron-photon transport code.
This work is meant to extend the available sensitivity estimation techniques in ITS by implementing an adjoint-based sensitivity method, GEAR-MC, to strengthen its sensitivity analysis capabilities. To ensure the accuracy of this method being extended to coupled electron-photon transport, it is compared against the central-difference and differential-operator methodologies to estimate sensitivity coefficients for an experiment performed by McLaughlin and Hussman. Energy deposition sensitivities were calculated using all three methods, and the comparison between them has provided confidence in the accuracy of the newly implemented method.
Unlike the current implementation of the differential-operator method in ITS, the GEAR-MC method was implemented with the option to calculate the energy-dependent energy deposition sensitivities, which are the sensitivity coefficients for energy deposition tallies to energy-dependent cross sections. The energy-dependent cross sections could be the cross sections for the material, elements in the material, or reactions of interest for the element. These sensitivities were compared to the energy-integrated sensitivity coefficients and exhibited a maximum percentage difference of 2.15%.