ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Mekiel Olguin, Christopher Perfetti, Brian Franke, Aaron Olson
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S818-S827
Research Article | doi.org/10.1080/00295639.2025.2462893
Articles are hosted by Taylor and Francis Online.
The sensitivity analysis algorithms that have been developed by the radiation transport community in multiple neutron transport codes, such as MCNP and SCALE, are extensively used by fields such as the nuclear criticality community. However, these techniques have seldom been considered for electron transport applications. In the past, the differential-operator method with the single scatter capability has been implemented in Sandia National Laboratories’ Integrated TIGER Series (ITS) coupled electron-photon transport code.
This work is meant to extend the available sensitivity estimation techniques in ITS by implementing an adjoint-based sensitivity method, GEAR-MC, to strengthen its sensitivity analysis capabilities. To ensure the accuracy of this method being extended to coupled electron-photon transport, it is compared against the central-difference and differential-operator methodologies to estimate sensitivity coefficients for an experiment performed by McLaughlin and Hussman. Energy deposition sensitivities were calculated using all three methods, and the comparison between them has provided confidence in the accuracy of the newly implemented method.
Unlike the current implementation of the differential-operator method in ITS, the GEAR-MC method was implemented with the option to calculate the energy-dependent energy deposition sensitivities, which are the sensitivity coefficients for energy deposition tallies to energy-dependent cross sections. The energy-dependent cross sections could be the cross sections for the material, elements in the material, or reactions of interest for the element. These sensitivities were compared to the energy-integrated sensitivity coefficients and exhibited a maximum percentage difference of 2.15%.