ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Mekiel Olguin, Christopher Perfetti, Brian Franke, Aaron Olson
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S818-S827
Research Article | doi.org/10.1080/00295639.2025.2462893
Articles are hosted by Taylor and Francis Online.
The sensitivity analysis algorithms that have been developed by the radiation transport community in multiple neutron transport codes, such as MCNP and SCALE, are extensively used by fields such as the nuclear criticality community. However, these techniques have seldom been considered for electron transport applications. In the past, the differential-operator method with the single scatter capability has been implemented in Sandia National Laboratories’ Integrated TIGER Series (ITS) coupled electron-photon transport code.
This work is meant to extend the available sensitivity estimation techniques in ITS by implementing an adjoint-based sensitivity method, GEAR-MC, to strengthen its sensitivity analysis capabilities. To ensure the accuracy of this method being extended to coupled electron-photon transport, it is compared against the central-difference and differential-operator methodologies to estimate sensitivity coefficients for an experiment performed by McLaughlin and Hussman. Energy deposition sensitivities were calculated using all three methods, and the comparison between them has provided confidence in the accuracy of the newly implemented method.
Unlike the current implementation of the differential-operator method in ITS, the GEAR-MC method was implemented with the option to calculate the energy-dependent energy deposition sensitivities, which are the sensitivity coefficients for energy deposition tallies to energy-dependent cross sections. The energy-dependent cross sections could be the cross sections for the material, elements in the material, or reactions of interest for the element. These sensitivities were compared to the energy-integrated sensitivity coefficients and exhibited a maximum percentage difference of 2.15%.