ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
W. Bennett, R. G. McClarren
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S808-S817
Research Article | doi.org/10.1080/00295639.2024.2333092
Articles are hosted by Taylor and Francis Online.
Verification solutions for uncertainty quantification (UQ) are presented for time-dependent transport problems where , the scattering ratio, is uncertain. The method of polynomial chaos expansions is employed for quick and accurate calculation of the quantities of interest (QoIs), and uncollided solutions are used to treat part of the uncertainty calculation analytically. We find that approximately six moments in the polynomial expansion are required to represent the solutions to these problems accurately. Additionally, the results show that if the uncertainty interval spans c = 1, which means it is uncertain whether the system is multiplying or not, the confidence interval will grow in time. Finally, since the QoI is a strictly increasing function, the percentile values are known and can be used to verify the accuracy of the expansion. These results can be used to test UQ methods for time-dependent transport problems.