ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Colin A. Weaver, Christopher M. Perfetti, Michael E. Rising
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S797-S807
Research Article | doi.org/10.1080/00295639.2024.2380607
Articles are hosted by Taylor and Francis Online.
A numerical code library was developed for the radiation transport code MCNP6.3 to calculate generalized response sensitivity coefficients for fixed source neutron transport problems with applications to inertial confinement fusion (ICF) experiments. The new MCNP6.3 dependency is used to generate a novel time convolution response that represents a neutron time-of-flight (nToF) signal. The traditional suite of macroscopic cross-section sensitivities and constrained fixed source probability distribution sensitivities are available for both the standard and the new response tallies in this library. However, novel sensitivity coefficients for the constrained hyperparameters of analytic fixed source probability distributions are emphasized in this work for their connection to ICF neutron transport models. Particularly, advanced Monte Carlo methods are developed for calculating the sensitivity of a nToF signal to perturbations in an ICF plasma’s ion temperature and burn history as well as perturbations in the target liner mass density and the shape parameters of the nToF detector’s impulse response function. Together, these capabilities form an advanced suite of computational tools that can be used to analyze and extract information from any ICF experimental platform.