ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Johan Cufe, Daniele Tomatis
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S730-S743
Research Article | doi.org/10.1080/00295639.2024.2392927
Articles are hosted by Taylor and Francis Online.
The Ronen method (RM) has been successfully applied to obtain highly accurate approximations to the solution of the neutron transport equation in one-dimensional (1D) homogeneous and heterogeneous configurations, considering both isotropic and linearly anisotropic problems. Anderson acceleration (AA)–based algorithms have recently been applied the RM iterative scheme to improve its convergence rate. Specifically, an improved version of the AA, the damped Anderson acceleration with restarts and epsilon monotonicity (DAAREM), has been implemented and employed during RM iterations. AA works on Krylov subspaces built with the residuals from successive iterations. DAAREM makes use of a restart and an optimized regularization parameter to guess the target solution by extrapolation. This kind of acceleration is crucial to finding the fixed-point solution throughout the nonlinear RM iterations and avoids the issue of slow convergence.
This work provides a detailed description of the DAAREM implementation in the RM. A full comparison of the convergence performances between nonaccelerated RM, standard AA, and DAAREM applied to RM iterations is presented for a 1D full-core benchmark. DAAREM is also improved in this work by ensuring the monotonicity of its control parameters, thus achieving higher performance. A significant reduction in the number of iterations in achieving the flux distribution within the target tolerance is always obtained for the model problems considered.