ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Johan Cufe, Daniele Tomatis
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S730-S743
Research Article | doi.org/10.1080/00295639.2024.2392927
Articles are hosted by Taylor and Francis Online.
The Ronen method (RM) has been successfully applied to obtain highly accurate approximations to the solution of the neutron transport equation in one-dimensional (1D) homogeneous and heterogeneous configurations, considering both isotropic and linearly anisotropic problems. Anderson acceleration (AA)–based algorithms have recently been applied the RM iterative scheme to improve its convergence rate. Specifically, an improved version of the AA, the damped Anderson acceleration with restarts and epsilon monotonicity (DAAREM), has been implemented and employed during RM iterations. AA works on Krylov subspaces built with the residuals from successive iterations. DAAREM makes use of a restart and an optimized regularization parameter to guess the target solution by extrapolation. This kind of acceleration is crucial to finding the fixed-point solution throughout the nonlinear RM iterations and avoids the issue of slow convergence.
This work provides a detailed description of the DAAREM implementation in the RM. A full comparison of the convergence performances between nonaccelerated RM, standard AA, and DAAREM applied to RM iterations is presented for a 1D full-core benchmark. DAAREM is also improved in this work by ensuring the monotonicity of its control parameters, thus achieving higher performance. A significant reduction in the number of iterations in achieving the flux distribution within the target tolerance is always obtained for the model problems considered.