ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Sign up for the Certified Nuclear Professional exam
Applications are now open for the summer 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through July 25, and only three testing sessions are offered per year, so it is important to apply soon.
The test will be administered from August 12 through September 9. To check eligibility and schedule your exam, click here.
Johan Cufe, Daniele Tomatis
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S710-S729
Research Article | doi.org/10.1080/00295639.2024.2333088
Articles are hosted by Taylor and Francis Online.
The Ronen Method (RM) is a nonlinear iterative scheme that demands successive resolutions of the diffusion equation, where local diffusion constants are modified to reproduce more accurate estimates of the neutron currents by a transport operator. The methodology is currently formulated using the formalism of the collision probability method for evaluation of the current. The RM was recently tested on a complete suite of one-dimensional (1-D) multigroup benchmark problems. Small differences in the flux (less than 2%) were reported at material interfaces and close to the vacuum boundary with respect to the reference solution from transport.
This work investigates first a possible numerical equivalence between transport and diffusion in some representative 1-D problems from the same benchmark test suite. The equivalence is sought with optimal diffusion coefficients computed using reference transport solutions that allow for adjusting the diffusion model. The RM, which attempts to obtain such equivalent diffusion coefficients without knowing the reference solution, is then compared to the optimal coefficients. The accuracy of the flux distribution at material interfaces is investigated for different approximations of the vacuum boundary and by decreasing progressively the RM convergence tolerance set in the iterative scheme.
Using tighter convergence criteria, the RM calculates more accurate flux distributions at all material interfaces, regardless of the value of the diffusion coefficient and the extrapolated distance set at the beginning of the iterative scheme. Maximum flux deviations are remarkably reduced when the RM convergence tolerance is set to eight or more significant digits, leading to improvements in the flux deviation of two orders in magnitude and providing numerical proof for equivalence with transport in the tested configurations.