ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
Johan Cufe, Daniele Tomatis
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S710-S729
Research Article | doi.org/10.1080/00295639.2024.2333088
Articles are hosted by Taylor and Francis Online.
The Ronen Method (RM) is a nonlinear iterative scheme that demands successive resolutions of the diffusion equation, where local diffusion constants are modified to reproduce more accurate estimates of the neutron currents by a transport operator. The methodology is currently formulated using the formalism of the collision probability method for evaluation of the current. The RM was recently tested on a complete suite of one-dimensional (1-D) multigroup benchmark problems. Small differences in the flux (less than 2%) were reported at material interfaces and close to the vacuum boundary with respect to the reference solution from transport.
This work investigates first a possible numerical equivalence between transport and diffusion in some representative 1-D problems from the same benchmark test suite. The equivalence is sought with optimal diffusion coefficients computed using reference transport solutions that allow for adjusting the diffusion model. The RM, which attempts to obtain such equivalent diffusion coefficients without knowing the reference solution, is then compared to the optimal coefficients. The accuracy of the flux distribution at material interfaces is investigated for different approximations of the vacuum boundary and by decreasing progressively the RM convergence tolerance set in the iterative scheme.
Using tighter convergence criteria, the RM calculates more accurate flux distributions at all material interfaces, regardless of the value of the diffusion coefficient and the extrapolated distance set at the beginning of the iterative scheme. Maximum flux deviations are remarkably reduced when the RM convergence tolerance is set to eight or more significant digits, leading to improvements in the flux deviation of two orders in magnitude and providing numerical proof for equivalence with transport in the tested configurations.