ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Johan Cufe, Daniele Tomatis
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S710-S729
Research Article | doi.org/10.1080/00295639.2024.2333088
Articles are hosted by Taylor and Francis Online.
The Ronen Method (RM) is a nonlinear iterative scheme that demands successive resolutions of the diffusion equation, where local diffusion constants are modified to reproduce more accurate estimates of the neutron currents by a transport operator. The methodology is currently formulated using the formalism of the collision probability method for evaluation of the current. The RM was recently tested on a complete suite of one-dimensional (1-D) multigroup benchmark problems. Small differences in the flux (less than 2%) were reported at material interfaces and close to the vacuum boundary with respect to the reference solution from transport.
This work investigates first a possible numerical equivalence between transport and diffusion in some representative 1-D problems from the same benchmark test suite. The equivalence is sought with optimal diffusion coefficients computed using reference transport solutions that allow for adjusting the diffusion model. The RM, which attempts to obtain such equivalent diffusion coefficients without knowing the reference solution, is then compared to the optimal coefficients. The accuracy of the flux distribution at material interfaces is investigated for different approximations of the vacuum boundary and by decreasing progressively the RM convergence tolerance set in the iterative scheme.
Using tighter convergence criteria, the RM calculates more accurate flux distributions at all material interfaces, regardless of the value of the diffusion coefficient and the extrapolated distance set at the beginning of the iterative scheme. Maximum flux deviations are remarkably reduced when the RM convergence tolerance is set to eight or more significant digits, leading to improvements in the flux deviation of two orders in magnitude and providing numerical proof for equivalence with transport in the tested configurations.