ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Shai Kinast, Dean Price, Claudio Filippone, Brendan Kochunas
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S680-S696
Research Article | doi.org/10.1080/00295639.2024.2352661
Articles are hosted by Taylor and Francis Online.
An analysis of the stability margins of the innovative Holos-Quad microreactor design is presented. This high-temeprature gas-cooled reactor (HTGR) system is designed to operate fully autonomously with passive safety mechanisms. Therefore, the inherent stability of the reactor is of great importance. Using a point-reactor model, which couples point kinetics to thermal-hydraulic heat balance equations and includes reactivity feedback effects of the fuel and moderator temperatures, the closed-loop transfer function of the reactor is derived. Applying the approach of linear systems and control theory, both the gain and phase margins of the Holos-Quad design are obtained. The analysis demonstrates that the design is stable, with an infinite gain margin and a finite phase margin.
A parametric uncertainty quantification study is also performed using a total Monte Carlo approach. The stability of the reactor for different power levels, such as during reactor startup or load-following transients, is also explored. Finally, two sensitivity analysis methods are applied, namely, multiple regression (deriving standardized regression coefficients) and variance-based sensitivity analysis (known as the Sobol method), to study the contribution of each of the parameters to the stability margins’ uncertainty. This analysis improves our understanding of the role of each of the parameters in the stability of the reactor.