ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Nick Rollins, India Allan, Jason Hou
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S630-S648
Research Article | doi.org/10.1080/00295639.2024.2328937
Articles are hosted by Taylor and Francis Online.
The pebble bed reactor is a unique reactor design due to its capacity for continuous multipass circulation of the fuel elements, without causing interruption to reactor operation, with the assistance of the burnup measurement system. Such a system necessarily requires an accurate knowledge of the burnup of each fuel pebble upon ejection from the core so as to inform the reloading decision and to ensure that no pebble exceeds the regulated discharge burnup limit at any point following reinsertion into the reactor core. In this work, we conceptualize, develop, and demonstrate a machine learning–based fuel burnup prediction framework leveraging advanced modeling and simulation capabilities.
At its core, machine learning regression models are learned from simulated data to establish the correlation among the irradiated fuel composition (hence burnup), the gamma leakage spectrum, and the gamma spectroscopy results. Sensitivity analysis is conducted to quantify the impact of unknown design parameters, such as fuel enrichment, and irradiation environment, including power density, temperature, and neighboring materials, on the prediction accuracy of various supervised regression algorithms.
The effects of a short cooldown period on machine learning prediction accuracy are also investigated. A test data set is used to validate that the data generation methodology proposed in this work successfully results in a machine learning model capable of interpolating its prediction of burnup onto a much wider range of irradiation conditions than were explicitly represented in the training database. The inclusion of a cooldown period of just 2 h leads to a prediction root-mean-square error of <5 MWd/kgU when the fuel enrichment is known and <9 MWd/kgU otherwise.