ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
G. Aversano, H. S. Parrilla, D. Hellfeld, J. R. Vavrek
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S575-S586
Research Article | doi.org/10.1080/00295639.2024.2347686
Articles are hosted by Taylor and Francis Online.
Machine learning has been found to be ubiquitously useful across many industries, presenting an opportunity to improve radiation detection performance using data-driven algorithms. Improved detector resolution can aid in the detection, identification, and quantification of radionuclides. In this work, a novel, data-driven, unsupervised learning approach is developed to improve detector spectral characteristics by learning, and subsequently rejecting, poorly performing regions of the pixelated detector. Feature engineering is used to fit individual characteristic photo peaks to a Doniach lineshape with a linear background model. Then, principal component analysis is used to learn a lower-dimension latent space representation of each photo peak where the pixels are clustered, and subsequently ranked, based on the cluster mean distance to an optimal point. Pixels within the worst cluster(s) are rejected to improve the full-width at half-maximum (FWHM) by 10% to 15% (relative to the bulk detector) at 50% net efficiency when applied to training data obtained from measurements of a 100 μCi 154Eu source using a H3D M400i pixelated cadmium zinc telluride detector.
These results compare well with, but do not outperform, a greedy algorithm that accumulates pixels in order of FWHM from lowest to highest used as a benchmark. In the future, this approach can be extended to include the detector energy and angular response. Finally, the model is applied to newly seen natural and enriched uranium spectra relevant for nuclear safeguards applications.