ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
G. Aversano, H. S. Parrilla, D. Hellfeld, J. R. Vavrek
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S575-S586
Research Article | doi.org/10.1080/00295639.2024.2347686
Articles are hosted by Taylor and Francis Online.
Machine learning has been found to be ubiquitously useful across many industries, presenting an opportunity to improve radiation detection performance using data-driven algorithms. Improved detector resolution can aid in the detection, identification, and quantification of radionuclides. In this work, a novel, data-driven, unsupervised learning approach is developed to improve detector spectral characteristics by learning, and subsequently rejecting, poorly performing regions of the pixelated detector. Feature engineering is used to fit individual characteristic photo peaks to a Doniach lineshape with a linear background model. Then, principal component analysis is used to learn a lower-dimension latent space representation of each photo peak where the pixels are clustered, and subsequently ranked, based on the cluster mean distance to an optimal point. Pixels within the worst cluster(s) are rejected to improve the full-width at half-maximum (FWHM) by 10% to 15% (relative to the bulk detector) at 50% net efficiency when applied to training data obtained from measurements of a 100 μCi 154Eu source using a H3D M400i pixelated cadmium zinc telluride detector.
These results compare well with, but do not outperform, a greedy algorithm that accumulates pixels in order of FWHM from lowest to highest used as a benchmark. In the future, this approach can be extended to include the detector energy and angular response. Finally, the model is applied to newly seen natural and enriched uranium spectra relevant for nuclear safeguards applications.