ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Ronald Daryll E. Gatchalian, Pavel V. Tsvetkov
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S551-S574
Research Article | doi.org/10.1080/00295639.2024.2328957
Articles are hosted by Taylor and Francis Online.
Reactivity measurement methods, like the Amplified Source Method (ASM), link observable quantities to integral physics parameters characterizing subcritical assemblies (SCAs). These methods were mostly derived from point reactor kinetics, which assumes fundamental mode distribution. However, in SCAs, external sources cannot be neglected, leading to a nonideal response, such as the detector position dependence of measured .
This work investigates deterministic and probabilistic deep learning (DL) in determining and kinetics/subcritical parameters using core map and foil/active detector responses as inputs, which distinguishes DL from neutronics codes. Convolutional neural networks surpassed dense neural networks with higher accuracy, while assigning a strong signature to appropriate core map features. Expansion into multi-input networks, which also process reaction rates, highlighted DL’s flexibility by accurate prediction regardless of reaction type.
Uncertainty quantification of DL was done using Monte Carlo (MC) Dropout and Bayesian neural network (BNN). The results favored BNN over MC Dropout, showing greater improvement with increasing data. An assessment of ASM, applicable in a SCA at source equilibrium, showed a reactivity bias of up to −3.59%Δk/k (−4.86 $). In contrast, DL had a maximum bias of only 0.38%Δk/k (0.5 $). Underestimation by ASM represents a nonconservative scenario in criticality safety, while DL proved robust against spatial effects. This demonstrates DL’s potential in ensuring reactivity margins and a safe approach to criticality in reactor operation regimes where standard techniques can fail.