ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Ronald Daryll E. Gatchalian, Pavel V. Tsvetkov
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S551-S574
Research Article | doi.org/10.1080/00295639.2024.2328957
Articles are hosted by Taylor and Francis Online.
Reactivity measurement methods, like the Amplified Source Method (ASM), link observable quantities to integral physics parameters characterizing subcritical assemblies (SCAs). These methods were mostly derived from point reactor kinetics, which assumes fundamental mode distribution. However, in SCAs, external sources cannot be neglected, leading to a nonideal response, such as the detector position dependence of measured .
This work investigates deterministic and probabilistic deep learning (DL) in determining and kinetics/subcritical parameters using core map and foil/active detector responses as inputs, which distinguishes DL from neutronics codes. Convolutional neural networks surpassed dense neural networks with higher accuracy, while assigning a strong signature to appropriate core map features. Expansion into multi-input networks, which also process reaction rates, highlighted DL’s flexibility by accurate prediction regardless of reaction type.
Uncertainty quantification of DL was done using Monte Carlo (MC) Dropout and Bayesian neural network (BNN). The results favored BNN over MC Dropout, showing greater improvement with increasing data. An assessment of ASM, applicable in a SCA at source equilibrium, showed a reactivity bias of up to −3.59%Δk/k (−4.86 $). In contrast, DL had a maximum bias of only 0.38%Δk/k (0.5 $). Underestimation by ASM represents a nonconservative scenario in criticality safety, while DL proved robust against spatial effects. This demonstrates DL’s potential in ensuring reactivity margins and a safe approach to criticality in reactor operation regimes where standard techniques can fail.