ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Ronald Daryll E. Gatchalian, Pavel V. Tsvetkov
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S551-S574
Research Article | doi.org/10.1080/00295639.2024.2328957
Articles are hosted by Taylor and Francis Online.
Reactivity measurement methods, like the Amplified Source Method (ASM), link observable quantities to integral physics parameters characterizing subcritical assemblies (SCAs). These methods were mostly derived from point reactor kinetics, which assumes fundamental mode distribution. However, in SCAs, external sources cannot be neglected, leading to a nonideal response, such as the detector position dependence of measured .
This work investigates deterministic and probabilistic deep learning (DL) in determining and kinetics/subcritical parameters using core map and foil/active detector responses as inputs, which distinguishes DL from neutronics codes. Convolutional neural networks surpassed dense neural networks with higher accuracy, while assigning a strong signature to appropriate core map features. Expansion into multi-input networks, which also process reaction rates, highlighted DL’s flexibility by accurate prediction regardless of reaction type.
Uncertainty quantification of DL was done using Monte Carlo (MC) Dropout and Bayesian neural network (BNN). The results favored BNN over MC Dropout, showing greater improvement with increasing data. An assessment of ASM, applicable in a SCA at source equilibrium, showed a reactivity bias of up to −3.59%Δk/k (−4.86 $). In contrast, DL had a maximum bias of only 0.38%Δk/k (0.5 $). Underestimation by ASM represents a nonconservative scenario in criticality safety, while DL proved robust against spatial effects. This demonstrates DL’s potential in ensuring reactivity margins and a safe approach to criticality in reactor operation regimes where standard techniques can fail.