ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Eric Aboud, Jesse Norris, Daniel Siefman
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S531-S536
Research Article | doi.org/10.1080/00295639.2024.2328452
Articles are hosted by Taylor and Francis Online.
Integral benchmarks for criticality safety and nuclear data validation require expensive uncertainty quantification studies. In general, uncertainty quantification techniques ignore correlations between experiments and shared components. Experiments, such as the Thermal/Epithermal eXperiments (TEX) campaigns, consist of many shared components, such as the Jemima highly enriched uranium (HEU) fuel plates, which create a strong correlation in their uncertainties. While these correlations are known to exist, they are often not estimated because of the complexity of such calculations. This paper describes an intuitive method of determining the covariance for each of the experimental components, providing a correlation for each family of components across the multiple cases examined within a benchmark. A proof-of-principle study using the TEX-HEU experimental campaign was performed and verified that the covariance and correlation matrices can be calculated with information commonly found in the International Criticality Safety Benchmark Evaluation Project benchmarks. This study showed that the introduction of model and experimental covariances reduces the χ2 per degree of freedom from 2.203 to 1.179, indicating that the omission causes overly pessimistic bias quantifications. This technique can be seamlessly integrated to current benchmark evaluations as well as reevaluations of legacy benchmarks.