ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Thomas Ligonnet, Axel Laureau, Andreas Pautz, Vincent Lamirand
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S521-S530
Research Article | doi.org/10.1080/00295639.2024.2357963
Articles are hosted by Taylor and Francis Online.
In a collaboration between Ecole Polytechnique Fédérale de Lausanne (EPFL) and CEA, in the fall of 2020, the experimental Programme d’Étude en Transmission de l’Acier Lourd et ses Eléments (PETALE) was successfully carried out in the CROCUS reactor of EPFL. This article presents and compares the methods tested in the modeling of the experiments, specifically focusing on the metal reflectors installed at the periphery of CROCUS. A basic design model consisting of a few cuboids was refined to a fully detailed version, without impacting the run time of simulations. Notably, each reflector sheet of PETALE was segmented into 121 voxels based on topological measurements. This detailed voxelization did not affect calculation times, thanks to the use of three-dimensional lattices as available in Serpent 2. Profiling of the simulations revealed the high computational surface transformations associated with Serpent 2 and highlighted the efficiency benefits of factorizing these into universe transformations. As the CROCUS simulations were carried out using a modified build of Serpent 2, additional simulations were also performed using a standard version of Serpent 2 with a GODIVA model as a neutron source to ensure that the findings are generalizable. These additional tests confirmed the initial results, with significant performance variations observed between the models, particularly larger in surface-tracking mode than in delta-tracking mode. Consequently, the modeling method may therefore be applied to future high-fidelity modeling of neutron transmission and shielding experiments.