ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
C. Fedon, R. P. Kollaard, A. Metz
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S500-S506
Research Article | doi.org/10.1080/00295639.2024.2357435
Articles are hosted by Taylor and Francis Online.
In the context of designing radiotherapy facilities, typical dose estimation methods involve analytical approaches, as outlined in International Atomic Energy Agency (IAEA) Safety Reports Series No. 47 (IAEA 47). These methods are known for their ease of use and rapid calculations, but they could lead to either overestimation or underestimation of radiation doses. Hence, the integration of Monte Carlo (MC) methods is considered valuable. In this particular study, a radiotherapy facility was modeled using MCNP version 6.2, and dose calculations were conducted using analytical techniques following both IAEA 47 guidelines and MC simulations. The study focused on monoenergetic photon cone beams with energies of 10 and 15 MeV. Notably, the beam’s orientation prevented primary radiation from reaching the dose location at the entrance of the maze, allowing only scatter radiation to contribute to the tally. Given the challenges associated with obtaining reliable and accurate results through standard MCNP calculations, the investigation focused on the use of weight windows as a variance reduction technique. The findings revealed that the IAEA method tends to provide conservative results only when the same conditions were replicated in the MC simulations. In fact, approximately 50% of the final dose estimated through MC methods accounted for factors that were not considered in the analytical calculations. The primary contributor to scattering (averaging around 30%) was identified as the floor and ceiling. This study underscores the need for caution when relying solely on the analytical approach, as it may not consistently yield conservative outcomes.