ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
C. Fedon, R. P. Kollaard, A. Metz
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S500-S506
Research Article | doi.org/10.1080/00295639.2024.2357435
Articles are hosted by Taylor and Francis Online.
In the context of designing radiotherapy facilities, typical dose estimation methods involve analytical approaches, as outlined in International Atomic Energy Agency (IAEA) Safety Reports Series No. 47 (IAEA 47). These methods are known for their ease of use and rapid calculations, but they could lead to either overestimation or underestimation of radiation doses. Hence, the integration of Monte Carlo (MC) methods is considered valuable. In this particular study, a radiotherapy facility was modeled using MCNP version 6.2, and dose calculations were conducted using analytical techniques following both IAEA 47 guidelines and MC simulations. The study focused on monoenergetic photon cone beams with energies of 10 and 15 MeV. Notably, the beam’s orientation prevented primary radiation from reaching the dose location at the entrance of the maze, allowing only scatter radiation to contribute to the tally. Given the challenges associated with obtaining reliable and accurate results through standard MCNP calculations, the investigation focused on the use of weight windows as a variance reduction technique. The findings revealed that the IAEA method tends to provide conservative results only when the same conditions were replicated in the MC simulations. In fact, approximately 50% of the final dose estimated through MC methods accounted for factors that were not considered in the analytical calculations. The primary contributor to scattering (averaging around 30%) was identified as the floor and ceiling. This study underscores the need for caution when relying solely on the analytical approach, as it may not consistently yield conservative outcomes.