ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Axel Laureau, Thibault Le Meute, Thomas Ligonnet, Elsa Merle
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S342-S354
Research Article | doi.org/10.1080/00295639.2024.2357422
Articles are hosted by Taylor and Francis Online.
This article outlines the advancements made in broadening the application scope of the OpenMC neutron transport code to include thermohydraulic coupling and nuclear data uncertainty propagation. These developments primarily involve the incorporation of the correlated sampling (CS) technique, facilitating the propagation of thermal feedback or cross-section sampling on neutronic calculations through neutron weight adjustments. The CS technique is integrated with computer-aided-design (CAD)–based meshing and the Transient Fission Matrix (TFM) approach. Together, these components enable comprehensive handling of neutronics-thermohydraulic coupling: The TFM approach addresses neutron kinetics via precalculated neutron transport matrices, the CS technique accounts for thermal feedback impacts on the matrices, and CAD meshing defines volumes corresponding to each matrix bin to align results with computational fluid dynamics codes, specifically OpenFOAM. Implementation details and verification procedures are elaborated, alongside an analysis on existing limitations and possible perspectives.