ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Patrick F. O’Rourke, Anil K. Prinja, Scott D. Ramsey
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S180-S200
Research Article | doi.org/10.1080/00295639.2024.2439227
Articles are hosted by Taylor and Francis Online.
In this report, we study several aspects of the root spectrum of the coupled assembly probability of initiation equations to bolster confidence in the results of the companion paper, A. K. Prinja, P. F. O’Rourke, and S. D. Ramsey, “Probability of Initiation in Coupled Multiplying Assemblies.” We apply Bernstein’s Theorem to develop analytical expressions for the number of distinct nontrivial roots for two and three coupled assemblies and make inferences that the behavior holds in general. This result provides a benchmark number for the expected number of roots to be obtained when calculating the entire root spectrum. We employ a numerical method, the Homotopy Continuation Method (HCM), to obtain the entire root spectrum. We use the HCM to study parametric behavior of the root spectrum for subcritical and supercritical systems and compare with the Newton-Raphson Method (NRM) result, which provides only a single solution but is computationally favorable. We show that indeed the NRM and HCM agree (for a single root), and we further perform a stability analysis on the entire spectrum to show that the NRM result is the only stable root in the spectrum for the entire range of system criticalities. The results are demonstrated for systems consisting of two and four coupled assemblies.