ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
A. Rispo, X. Doligez, S. Ravaux, C. Trakas
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S31-S41
Review Article | doi.org/10.1080/00295639.2024.2340184
Articles are hosted by Taylor and Francis Online.
Most of the neutronic core calculation schemes used by industrialists for nuclear reactor studies are based on a two-step deterministic scheme: A two-dimensional transport calculation at the assembly level produces homogenized and condensed nuclear data used by a full three-dimensional core solver under the diffusion approximation. The validity domain of such schemes is driven by the hypotheses of the diffusion approximation, implying wide meshes (10 to 20 cm), and is hence limited to studies that do not require a thinner description of neutron behavior. Consequently, local phenomena and heterogeneous interfaces are not yet fully validated with industrial two-level calculation schemes. For instance, the axial core-reflector interface, which is characterized by extra thermalization of neutrons leading to a local (≈2-cm height) increase of the neutron flux at the axial edges of fuel pins, is specifically challenging for deterministic methods. To cope with this issue, specific safety studies are performed with reference Monte Carlo simulations. This paper shows that enhancing the equivalence method enables flux discrepancies to be reduced from 12% to 6% for mixed oxide fuels and from 9.3% to <1% for uranium oxide fuel (impacting the power discrepancy from 5% to 3% and from 0.3% to almost 0.0%, respectively) between Monte Carlo and deterministic simulations (SCIENCE V2). The improved equivalence method uses dedicated discontinuity factors and constants, according to an optimized mesh composed by a mesh for each medium and a refined mesh in the fuel region.