ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Masahiro Fukushima, Masaki Andoh, Yasunobu Nagaya
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 1029-1043
Note | doi.org/10.1080/00295639.2024.2405668
Articles are hosted by Taylor and Francis Online.
A series of simulated experiments were conducted at the fast critical assembly (FCA) of the Japan Atomic Energy Agency to simulate a light water reactor core with a tight lattice cell containing highly enriched mixed-oxide fuel with a fissile plutonium (Pu) ratio >15%. The prediction accuracy of the neutron computation codes and nuclear data libraries in a wide range of neutron spectra was evaluated by constructing three experimental configurations of the FCA-XXII-1 assembly with different void fractions (45%, 65%, and 95%) of the moderator material (foamed polystyrene). The hydrogen-to–nuclear fuel atomic ratio was systematically varied from 0.1 to 0.8. In a previous paper, we reported the criticality and reactivity worths measured in these experiments.
This technical note provides the experimental results for the central reaction rate ratios and fission distributions as follows. The fission rate ratios of uranium (U) (238U) and 239Pu relative to 235U were measured at the core centers using three calibrated fission chambers, and the 238U capture reaction rate ratio relative to 235U fission was measured using depleted U foils. The reaction rate distributions were also obtained by traversing four micro fission chambers of highly enriched U, natural U, Pu, and neptunium through each core region in the radial and axial directions. The experimental analyses were performed using detailed models of the Monte Carlo code MVP3 with the Japanese evaluated nuclear data library of JENDL-4.0. Most calculation results agreed well with the experiments, whereas those for the fission rate ratio of 239Pu to 235U were underestimated by up to 6% with the softening neutron spectrum.