ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Fred D. Lang
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 1010-1028
Research Article | doi.org/10.1080/00295639.2024.2406724
Articles are hosted by Taylor and Francis Online.
This work proposes a paradigm shift in nuclear safety. Its NCV Method (neutronics/calorimetrics/verification procedures) integrates nuclear power’s motive force—neutron flux—within Second Law exergy analysis, coupled with corrected conservation of energy flows, both descriptive of the entire system. These descriptions with two satellite equations result in a verifiable understanding of the nuclear engine: neutron flux [or neutronic terms f (Φ)], useful power produced, and system heat rejection, all coupled to reactor vessel coolant mass flow. Key to NCV is its assumption that all nuclear phenomena are inertial processes, devoid of terrestrial reference. This approach demands reinterpretation of Einstein’s ΔE = c2Δm by describing his ΔE as an exergetic potential, an ultimate Free Exergy. For fission, Free Exergy consists of both recoverable and irreversible portions given a total MeV release. In transference to the coolant, the recoverable release produces an exergetic increase (Δg) in the fluid; an explicitly calculated Inertial Conversion Factor produces a computed Core Thermal Power (Δh) and a nuclear TRef.
This paper asserts that traditional nuclear engineering has lacked direct linkage between neutron flux and system fluid thermodynamics. With NCV, nuclear power’s motive force is explicitly related to extensive properties, thus allowing reconciliation of principal system parameters of the nuclear engine (fission source, power out, heat rejection, and main system flow). Principal verification is accomplished by comparing the computed useful power to that which is directly measured. The NCV method has the potential to reduce uncertainty in computed Core Thermal Power from its commonly accepted ±2% by an order of magnitude. Its ability to improve plant safety becomes intrinsic, for example: ● tracking changes in verifiable flux versus reactor vessel coolant flow; ● tracking changes in the axial position where saturation may be approached, and the position of the average coolant temperature; ● monitoring the instantaneously computed flux versus reactor vessel pump currents; ● detecting changes in the important ΔλGEN and ΔλEQ40 verification parameters, which compare the computed shaft power delivered to the generator, to the measured; ● surveilling component irreversible losses using Fission Consumption Indices; etc.
● tracking changes in verifiable flux versus reactor vessel coolant flow;
● tracking changes in the axial position where saturation may be approached, and the position of the average coolant temperature;
● monitoring the instantaneously computed flux versus reactor vessel pump currents;
● detecting changes in the important ΔλGEN and ΔλEQ40 verification parameters, which compare the computed shaft power delivered to the generator, to the measured;
● surveilling component irreversible losses using Fission Consumption Indices; etc.