ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Youssef Abouhussien, Gennady Miloshevsky
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 1000-1009
Research Article | doi.org/10.1080/00295639.2024.2399456
Articles are hosted by Taylor and Francis Online.
A high-altitude nuclear detonation releases a significant portion of energy as X-rays with a blackbody spectrum. Satellites are particularly vulnerable to prompt soft X-rays (~1 keV) absorbed within a few microns of the surface of the solar array, causing melting and evaporation of its materials. The absorption of soft X-rays in solar cell materials is studied using GEANT4 computer software. Energy deposition as a function of depth (depth-dose profile) is calculated for slab geometries of dielectric and metallic materials. The photo-absorption and Compton scattering of X-rays and the contribution of secondary radiation, such as photo-electrons, Auger-electrons, and fluorescence photons are taken into account. The effect of the production of secondary radiation on the distribution of deposited dose in the near-surface region of materials is investigated. The results presented in this work are validated against published data and provide valuable insights into X-ray absorption by solar cell materials, the redistribution of energy by secondary radiation, and the spatial scale of power density deposition that can be used as a source term for the further thermomechanical analysis of a material’s phase transformations and melting.