ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Sign up for the Certified Nuclear Professional exam
Applications are now open for the summer 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through July 25, and only three testing sessions are offered per year, so it is important to apply soon.
The test will be administered from August 12 through September 9. To check eligibility and schedule your exam, click here.
Youssef Abouhussien, Gennady Miloshevsky
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 1000-1009
Research Article | doi.org/10.1080/00295639.2024.2399456
Articles are hosted by Taylor and Francis Online.
A high-altitude nuclear detonation releases a significant portion of energy as X-rays with a blackbody spectrum. Satellites are particularly vulnerable to prompt soft X-rays (~1 keV) absorbed within a few microns of the surface of the solar array, causing melting and evaporation of its materials. The absorption of soft X-rays in solar cell materials is studied using GEANT4 computer software. Energy deposition as a function of depth (depth-dose profile) is calculated for slab geometries of dielectric and metallic materials. The photo-absorption and Compton scattering of X-rays and the contribution of secondary radiation, such as photo-electrons, Auger-electrons, and fluorescence photons are taken into account. The effect of the production of secondary radiation on the distribution of deposited dose in the near-surface region of materials is investigated. The results presented in this work are validated against published data and provide valuable insights into X-ray absorption by solar cell materials, the redistribution of energy by secondary radiation, and the spatial scale of power density deposition that can be used as a source term for the further thermomechanical analysis of a material’s phase transformations and melting.