ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Zhigang Li, Junfeng Zhao, Yuanjie Sun, Yue Zhang, Hongtao Zhao
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 957-966
Research Article | doi.org/10.1080/00295639.2024.2404581
Articles are hosted by Taylor and Francis Online.
Perovskite scintillators have garnered significant interest in the realm of gamma-ray imaging in the past few years. Here, a comprehensive investigation into the gamma-ray imaging properties of CsPbBr3-PP composite scintillators is presented, wherein the Monte Carlo simulation approach offered by Geant4 is utilized. The primary focus is on the point spread function and modulation transfer function of the material, elucidating the nuanced interactions between gamma-ray energy, scintillator thickness, and their resultant imaging capabilities. A key aspect of this study is the exploration of the nonlinear and inverse effect of scintillator thickness and the energy of the photon beam on the imaging quality, highlighting the trade-offs between energy deposition and image resolution.
This research underscores the importance of optimizing the scintillator design to balance these factors, catering to specific applications in high-energy detection and imaging. This work not only contributes significantly to the field of material sciences and radiographic imaging, but also provides practical insights for the development of more effective scintillator-based detectors. The findings of this study have broad implications for the design and application of perovskite scintillators in various high-tech industries and scientific research.