ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Virginie Solans, Henrik Sjöstrand, Sophie Grape, Erik Branger, Anders Sjöland
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 930-940
Research Article | doi.org/10.1080/00295639.2024.2406655
Articles are hosted by Taylor and Francis Online.
In the context of a geological repository for nuclear waste, fast and accurate predictions of decay heat are needed for different applications ranging from canister loading optimization to comparing decay heat predictions from state-of-the-art codes with experimental measurements. This work uses a large database of simulated pressurized water reactor (PWR) spent nuclear fuel (SNF) with an extensive range of fuel parameters to demonstrate that by using only the burnup, initial enrichment, and cooling time of the SNF, it is possible to predict the decay heat of a PWR SNF.
A linear interpolation model has been developed using the simulated data and tested on data from decay heat measurements using a calorimeter. The model code was also made publicly available [V. Solans, “Python Script for the Prediction of Decay Heat from PWR Spent Nuclear Fuel Using Fuel Parameters,” Zenodo (2024)]. The results show that the decay heat can be well predicted, with the relative error between measurements and predictions ranging between 4% and 8%. After correcting for a systematic deviation between predictions and experimental results using the limited set of experimental measurement data available, the relative error can be further reduced to 2% to 3%.