ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Federal Power Act amendments focus on grid reliability
Fedorchak
North Dakota’s sole member of the U.S. House of Representatives, Republican freshman Congresswoman Julie Fedorchak, has introduced the Baseload Reliability Protection Act.
The bill aims to “amend the Federal Power Act to prohibit retirements of baseload electric generating units in any area that is served by a Regional Transmission Organization or an Independent System Operator and that the North American Electric Reliability Corporation [NERC] categorizes as at elevated risk or high risk of electricity supply shortfalls, and for other purposes.”
A summary of the legislation is available on Fedorchak’s House website.
Amendments: The Baseload Reliability Protection Act would amend the Federal Power Act in the following ways:
Puran Deng, Ryan Willat, Won Sik Yang
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 907-929
Research Article | doi.org/10.1080/00295639.2024.2403889
Articles are hosted by Taylor and Francis Online.
To achieve the goal of net-zero carbon emission in energy production, nuclear power capacity and waste generation are expected to expand significantly in the next few decades. In the condition of continuous fuel recycling, long-lived fission products (LLFPs) are dominant contributors to the disposal impacts of nuclear waste. In this study, six LLFPs, including 99Tc, 129I, 135Cs, 126Sn, 93Zr, and 79Se, were identified as the primary contributors to more than 99% of long-term radiotoxicity of disposed nuclear waste across a wide range of fuel cycle scenarios. To reduce the amounts of LLFPs sent to geological repositories, the nuclear transmutation of LLFPs is being pursued. Specifically, this work systematically assessed the feasibility of transmuting LLFPs via photonuclear reactions. Photon transmutation is physically viable for the identified primary LLFPs except for 99Tc. For the five transmutable LLFPs, the achievable photon transmutation performance without isotopic separation was evaluated based on scoping calculations and consideration of nuclear data uncertainties. Using an extremely intense laser Compton photon source of 1019 /s, the effective transmutation half-life can be reduced to a few years. However, the absolute transmutation rates of LLFPs remain below 1 kg/yr. The energy required to power the photon source for transmuting all LLFPs produced in a nuclear reactor exceeds the net energy output of the reactor. Several potential strategies for improving photon transmutation performance were analyzed. None can substantially enhance the performance to make it practical for industrial applications.