ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Puran Deng, Ryan Willat, Won Sik Yang
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 907-929
Research Article | doi.org/10.1080/00295639.2024.2403889
Articles are hosted by Taylor and Francis Online.
To achieve the goal of net-zero carbon emission in energy production, nuclear power capacity and waste generation are expected to expand significantly in the next few decades. In the condition of continuous fuel recycling, long-lived fission products (LLFPs) are dominant contributors to the disposal impacts of nuclear waste. In this study, six LLFPs, including 99Tc, 129I, 135Cs, 126Sn, 93Zr, and 79Se, were identified as the primary contributors to more than 99% of long-term radiotoxicity of disposed nuclear waste across a wide range of fuel cycle scenarios. To reduce the amounts of LLFPs sent to geological repositories, the nuclear transmutation of LLFPs is being pursued. Specifically, this work systematically assessed the feasibility of transmuting LLFPs via photonuclear reactions. Photon transmutation is physically viable for the identified primary LLFPs except for 99Tc. For the five transmutable LLFPs, the achievable photon transmutation performance without isotopic separation was evaluated based on scoping calculations and consideration of nuclear data uncertainties. Using an extremely intense laser Compton photon source of 1019 /s, the effective transmutation half-life can be reduced to a few years. However, the absolute transmutation rates of LLFPs remain below 1 kg/yr. The energy required to power the photon source for transmuting all LLFPs produced in a nuclear reactor exceeds the net energy output of the reactor. Several potential strategies for improving photon transmutation performance were analyzed. None can substantially enhance the performance to make it practical for industrial applications.