ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Bo Xu, Han Li, Lei Zhang, Helin Gong
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 873-887
Research Article | doi.org/10.1080/00295639.2024.2403895
Articles are hosted by Taylor and Francis Online.
The aging process or flow-induced vibration of reactor cores may lead to increased mechanical vibrations, affecting the reliability of in-core sensors and necessitating a robust solution for robust field reconstruction. This work tackles the challenges of reconstructing multiphysics fields from sparse and movable measurements by introducing an advanced framework that integrates various machine learning models with Voronoi tessellation. Our approach, building upon the Voronoi tessellation-assisted Convolutional Neural Network (VCNN), expands the capabilities to include a wider array of neural network architectures such as Convolutional Neural Networks (CNNs), Fourier Neural Operator (FNO), Dilated ResNet Encode-Process-Decode (DilResNet), Dilated Convolution Neural Operator (DCNO), Galerkin Transformer (GT), U-shaped Neural Operator (UNO), and Multiwavelet-based Operator (MWT). The effectiveness of these models is evaluated and validated through numerical tests based on the International Atomic Energy Agency benchmark, particularly noting average relative errors below 5% and 10% in the norm and norm, respectively, within a 5-cm amplitude around sensor nominal locations. The developed software toolkit encapsulates these architectures, providing a versatile option for nuclear engineers to reconstruct different types of physical fields efficiently.