ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Dongliang Zhang, Jia Shi
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 838-853
Research Article | doi.org/10.1080/00295639.2024.2397256
Articles are hosted by Taylor and Francis Online.
This study explores the factors influencing the cognitive processes of operators in digital nuclear power plants, with a focus on the correlation between these factors and electroencephalogram (EEG) features. Initially, based on expert consultations, seven factors were considered: stress, time, fatigue, procedural complexity, user interface experience, procedural clarity, and efficiency. From these, four were identified as the most crucial for each stage of the cognitive process, highlighting their significant roles in influencing cognitive performance and potentially correlating with distinct EEG characteristics. These were assessed using the fuzzy analytic hierarchy process (FAHP) to determine the weightings of influences across the cognitive stages of monitoring, decision making, and execution.
Employing a simulated scenario of a steam generator tube rupture, subjective questionnaires were utilized to gauge participant perceptions of influencer impacts at each stage, calculating human factors fuzzy synthetic values. Concurrently, EEG signals were segmented by operational steps, extracting around 114 features across the time, frequency, and time-frequency domains, which were then dimensionally reduced to 17 principal components via adaptive principal components analysis (APCA). A correlation analysis was performed between the human factors fuzzy synthetic values and the APCA-reduced EEG features of participants. Subsequently, the EEG feature columns of the eight selected participants were used as inputs to construct a transformer-based self-attention network model to evaluate the participants’ human factors fuzzy comprehensive values.
The findings confirm the transformer model’s efficacy in assessing these values, evidencing a significant correlation between the EEG features and human factors fuzzy synthetic values. Integrating FAHP with machine learning methodologies, this model proficiently estimated operators’ cognitive states during various cognitive processes, significantly enhancing human-machine interface design and the operational safety and efficiency at nuclear power plants.