ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Kookhyun Jeong, Yong Yang
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 817-828
Research Article | doi.org/10.1080/00295639.2024.2389601
Articles are hosted by Taylor and Francis Online.
Fuel-cladding chemical interaction is recognized as a significant challenge in metallic fuel/steel cladding systems due to the formation of low-melting-point intermetallic eutectic compounds between fuel and steel cladding constituents. To address this, the study explores diffusion barrier coatings applied via metal-organic chemical vapor deposition, chosen for its low processing temperature under 600°C, thus preventing thermal degradation of steel cladding. In this study, we successfully developed thin, dense coatings ranging from a few to several micrometers in thickness. These coatings are composed predominantly of a mixture of V2C and vanadium carbide (VC) phases. Following the coating process, the T91 ferritic/martensitic (F/M) steel substrates remained intact with no noticeable decarburization or reduction in microhardness near the VC coating. Further testing through diffusion couple experiments at 550°C for 100 h revealed that an 8-µm-thick VC coating layer can effectively prevent interdiffusion between cerium and T91 F/M steel. Leveraging optimized processing conditions on flat coupon samples, this deposition was also applied to an archived EBR-II HT-9 steel cladding. These results demonstrate promising applications for sodium-cooled fast reactors (SFRs).