ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Jin Li, Volkan Seker, Andrew Ward, Thomas Downar
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 772-792
Research Article | doi.org/10.1080/00295639.2024.2397621
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes have become increasingly popular for generating homogenized few-group cross-section data, especially for advanced reactor designs that have complex geometries and nontraditional compositions. However, the stochastic nature of Monte Carlo processes has the potential to introduce additional statistical uncertainties in the overall uncertainty in the prediction of core behavior. The work performed in this research quantified the additional uncertainty introduced by the use of Monte Carlo multigroup cross sections into the analysis of graphite-moderated pebble bed reactors. In this research, the objective was achieved by performing uncertainty quantification for the key output parameters in deterministic steady-state and transient safety calculations. The results show that when the homogenized multigroup cross sections are generated with a sufficient number of neutron histories in the Monte Carlo calculation, the uncertainties in the subsequent deterministic simulations caused by the Monte Carlo cross-section uncertainty are negligible compared to the contributions from the uncertainties of other input parameters.