ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Wei Xiao, Xiaojing Liu, Jianhua Zu, Xiang Chai, Hui He, Tengfei Zhang
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 750-771
Research Article | doi.org/10.1080/00295639.2024.2394732
Articles are hosted by Taylor and Francis Online.
Accurate modeling of the neutron transport equation (NTE) with anisotropic scattering is crucial to the understanding of neutron interactions within various mediums. The primary challenges in this domain are (1) the considerable computational resources demanded by anisotropic calculations and (2) the numerical instabilities that arise due to the transport correction approximation.
This study introduces a novel, generalized integral method based on the hybridized discontinuous Galerkin framework for solving the second-order NTE with anisotropic scattering. This method employs a spherical harmonics expansion to define the partial current at the mesh interface and applies an angular integral approach to the flux treatment within the mesh. This dual approach facilitates an efficient computational process while preserving accuracy.
The integral method has been validated through comparisons with the standard discrete ordinates method (SN) using two eigenvalue problems. The integral method showcases several significant improvements over the traditional SN method. First, it repositions the P0 scattering sources during the formulation process, effectively circumventing the convergence issues associated with transport correction. Second, this strategic repositioning substantially enhances the convergence rates of iterative calculations. Last, a standout feature of the integral method is its capability to perform angular integrals during assembling matrices, successfully reducing the floating-point operations for local flux retrieval and eliminating the ray effect.