ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Sign up for the Certified Nuclear Professional exam
Applications are now open for the summer 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through July 25, and only three testing sessions are offered per year, so it is important to apply soon.
The test will be administered from August 12 through September 9. To check eligibility and schedule your exam, click here.
Gilles Youinou
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 613-630
Research Article | doi.org/10.1080/00295639.2024.2381387
Articles are hosted by Taylor and Francis Online.
This paper presents a 1200-MW(thermal) advanced sodium-cooled thermal reactor concept that uses online refueling of 3.5% to 9.95% enriched UO2 fuel pin bundles; uses either graphite or beryllium oxide (BeO) as a neutron moderator; reaches outlet temperatures of 650°C enabling a thermal efficiency of at least 45%; has a high specific power of 133 W/g U; has average power densities of 16.4 and 43.2 W/cm3 with graphite and BeO, respectively; reaches an average discharge burnup of 100 MWd/kg U; and generates 52% less spent fuel volume, 28% less fission products, and 47% to 64% less transuranics than a typical large pressurized water reactor for the same amount of electricity produced.