ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Zachary K. Hardy, Jim E. Morel, Jan I. C. Vermaak
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 599-612
Research Article | doi.org/10.1080/00295639.2024.2384223
Articles are hosted by Taylor and Francis Online.
The second moment method is a linear acceleration technique that couples the transport equation to a diffusion equation with transport-dependent additive closures. The resulting low-order diffusion equation can be discretized independent of the transport discretization, unlike diffusion synthetic acceleration, and is symmetric positive definite, unlike quasidiffusion. While this method has been shown to be comparable to quasidiffusion in iterative performance for fixed source and time-dependent problems, it is largely unexplored as an eigenvalue problem acceleration scheme due to the belief that the resulting inhomogeneous source makes the problem ill posed. Recently, a preliminary feasibility study was performed on the second moment method for eigenvalue problems. The results suggested comparable performance to quasidiffusion and more robust performance than diffusion synthetic acceleration. This work extends the initial study to more realistic reactor problems using state-of-the-art discretization techniques. The results in this paper show that the second moment method is more computationally efficient than its alternatives on complex reactor problems with unstructured meshes.