ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Zachary K. Hardy, Jim E. Morel, Jan I. C. Vermaak
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 599-612
Research Article | doi.org/10.1080/00295639.2024.2384223
Articles are hosted by Taylor and Francis Online.
The second moment method is a linear acceleration technique that couples the transport equation to a diffusion equation with transport-dependent additive closures. The resulting low-order diffusion equation can be discretized independent of the transport discretization, unlike diffusion synthetic acceleration, and is symmetric positive definite, unlike quasidiffusion. While this method has been shown to be comparable to quasidiffusion in iterative performance for fixed source and time-dependent problems, it is largely unexplored as an eigenvalue problem acceleration scheme due to the belief that the resulting inhomogeneous source makes the problem ill posed. Recently, a preliminary feasibility study was performed on the second moment method for eigenvalue problems. The results suggested comparable performance to quasidiffusion and more robust performance than diffusion synthetic acceleration. This work extends the initial study to more realistic reactor problems using state-of-the-art discretization techniques. The results in this paper show that the second moment method is more computationally efficient than its alternatives on complex reactor problems with unstructured meshes.