ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Hossam H. Abdellatif, David Arcilesi
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 506-517
Research Article | doi.org/10.1080/00295639.2024.2375174
Articles are hosted by Taylor and Francis Online.
The innovative design of the AP1000 power plant has various layers of passive safety systems aiming to enhance reactor safety during normal and transient conditions. The passive containment cooling system (PCCS) is a safety-related system capable of removing heat from the steel containment vessel (SCV) to the atmosphere and preventing the containment from exceeding the design pressure and temperature following a postulated design-basis accident. The PCCS heat removal mechanisms include condensation on the internal SCV surface, heat conduction, natural convection, evaporation of water film, and radiative heat transfer. In two basic postulated scenarios, the reactor decay heat can ultimately be removed from the SCV only by air natural convection. The first scenario occurs 72 h following a large-break loss-of-coolant accident (LBLOCA) when the passive containment cooling water storage tank becomes unavailable. The second scenario occurs following a postulated loss of shutdown decay heat removal event. Hence, investigating the thermal-hydraulic behavior of the containment under transient conditions is essential to ensure its safety and integrity. In this study, a simplified three-dimensional model using ANSYS FLUENT is developed to investigate the cooling capability of air natural convection outside the SCV during a LBLOCA event. Because of the lack of experimental data, code-to-code validation was performed using the actual results of AP1000 alongside other research findings. The results show good agreement with available data, which can be used for future research.