ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Adam Q. Lam, Richard M. Vega
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 388-409
Research Article | doi.org/10.1080/00295639.2024.2380611
Articles are hosted by Taylor and Francis Online.
We present a new method for solving the linear Boltzmann transport equation. Two commonly used and well-understood methods for solving partial differential equations are the method of characteristics (MOC) and the finite element method (FEM). We propose a new method that combines the fundamental concept of the FEM with the analytic solution from the MOC to obtain coefficients for the FEM basis function expansion. Traditionally, coefficients for the FEM basis function expansion are obtained via matrix inversion. Instead, we solve for the coefficients with the MOC and represent the underlying fields with the basis function expansion using these coefficients. We provide a convergence study for our method with results from two sets of FEM basis functions: Gauss-Legendre and Gauss-Lobatto sets. We also compare two different variations of our method categorized as short characteristics and intermediate characteristics.