ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Andy Rivas, Gregory Kyriakos Delipei, Jason Hou
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 358-387
Research Article | doi.org/10.1080/00295639.2024.2372515
Articles are hosted by Taylor and Francis Online.
Advanced reactor designers are looking to maximize the system capacity factor to make advanced reactors more economically competitive and meet the projected energy demand. To achieve this goal, we propose a Dynamic Operation and Maintenance Optimization (DyOMO) framework to perform system-level predictive maintenance (PdM) using a dynamic Bayesian network and component-specific PdM using deep neural networks. At the system level, DyOMO detects the presence of anomalous phenomena, determines the most influential degradation mode, and estimates the remaining useful life (RUL) distribution for the system. At the component level, DyOMO summarizes the health state of key system components, determines the presence of an anomaly using a feedforward neural network, and predicts component RUL using a Bayesian neural network. To evaluate the overall performance of DyOMO, normal operations of a Pebble-Bed High-Temperature Gas-cooled Reactor (PB-HTGR) were simulated with realistic component degradation for the steam turbine and steam generator. Across the 20 independent reactor life simulations, it was found that maintenance was always performed before any safety limits were violated and before a component failed. Specifically, the system-level PdM suggested maintenance on the steam generator once the steam pressure approached its safety limit, and the component-specific PdM suggested maintenance on the steam turbine once the turbine blade hardness degraded. The results indicate that through the continuous monitoring of the system and individual components, the DyOMO framework improves safety and increases the availability of the reactor when compared to traditional maintenance philosophies.