ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Hicham Satti, Otman El Hajjaji, Tarek El Bardouni, Tarik El Ghalbzouri
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 280-294
Research Article | doi.org/10.1080/00295639.2024.2357454
Articles are hosted by Taylor and Francis Online.
This paper presents in-depth exploration and verification of the OpenNode nodal diffusion code, a robust tool designed for multigroup neutron diffusion simulations under steady-state conditions. Leveraging the Nodal Expansion Method with a quartic polynomial and moments weighting method, OpenNode demonstrates exceptional accuracy in approximating nodal surface fluxes, further enhanced by the Quadratic Transverse Leakage approximation. The critical concept of commutativity between adjoint and forward solutions is thoroughly investigated, serving as a benchmark for the code’s reliability in predicting system responses, determining single-point reactor kinetics parameters, and facilitating perturbation analyses.
The paper meticulously details OpenNode’s methodology for adjoint neutron flux computation, unraveling its rigorous approach through transposition operations and intricate mathematical transformations. Noteworthy features, including support for second and fourth polynomial orders; versatile computation modes; different mesh points; and seamless integration with Python, PyQt5, and Blender, underscore OpenNode’s adaptability.
Results from comprehensive analysis of the two-dimensional and three-dimensional International Atomic Energy Agency core benchmark problem showcase OpenNode’s prowess. The code excels in reactor geometry visualizations, benchmark parameters, and neutronic analysis, with a particular emphasis on commutativity verification against various benchmarked codes. The precision of OpenNode is further demonstrated in power distribution analyses, revealing remarkable proximity to reference values and symmetrical power distribution patterns.