ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Alexandru Catalin Stafie, Jun Nishiyama, Toru Obara
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 266-279
Research Article | doi.org/10.1080/00295639.2024.2347716
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to demonstrate a practical core design for a lead-cooled, nitride fueled, rotational fuel shuffling breed-and-burn (RFBB) fast reactor. The core design is based on the Westinghouse Lead Fast Reactor (WH-LFR) and uses natural uranium nitride fuel with a sodium bond encased in oxide dispersion-strengthened steel cladding. Simulations confirmed the potential of the reactor to maintain criticality at the equilibrium state, with a reactivity swing of less than 200 pcm at every cycle interval and an average discharge burnup of 235 MWd/kg heavy metals (HM) for a 1050 effective full-power day refueling interval. Power profiles were maintained stable at the equilibrium state, while the cladding of the discharged fuel incurred over 650 displacements per atom over its entire residency in the core.
From a nonproliferation perspective, the plutonium vector for the discharge fuel aligns with reactor-grade fuel standards, with over a 70% concentration of 239Pu and over 22% 240Pu, reducing the risk of weaponization. The adopted control rod system has been shown to offer sufficient negative reactivity of over 19 $ to bring the reactor into a subcritical state. Challenges such as the susceptibility of neutron balance to material thickness and neutron leakage have been addressed, emphasizing the necessity for meticulous design improvements. A steady-state thermohydraulic analysis confirmed the heat removal capacity from the hottest channel, ensuring operational safety. This study confirmed the feasibility of the RFBB strategy for a lead-cooled nitride-fueled fast reactor and sets a precedent for future research in enhancing fuel utilization and safety in nuclear reactors.