ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Shi Zeng
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 253-265
Research Article | doi.org/10.1080/00295639.2024.2347730
Articles are hosted by Taylor and Francis Online.
Material losses and gains are generally unavoidable in isotope separation cascades because of air leakage into the cascade and chemical reactions of the materials in contact with the process gas. Both losses and gains are incorporated into the well-known Q-cascade theory and can be considered differently for each component. The theory is applied, as an example, to investigating the separation of natural uranium to produce low-enriched uranium of 5% 235U, in which UF6 incurs material losses, generating the light impurity hydrogen fluoride (HF).
Two approaches are discussed, one using a carrier gas and another purging the light impurity to prevent the light impurity from exceeding the upper limit in the cascade product end for safe cascade operation. The results show that using carrier gas increases the relative total flow of the cascade, whereas purging the light impurity requires the development of a purging technology. The investigation presents a complicated but real practical scenario, where the components of different physical and chemical properties (some with and without material losses, and some with gains) all appear in the process gas, and demonstrates the applicability of the theory in the study of separation cascades.